
Laplacian Texture Blending.md 2025-08-15

1 / 4

Paper
GPU Friendly Laplacian Texture Blending by Bartlomiej Wronski

Journal of Computer Graphics Techniques Vol. 14, No. 1, 2025

https://jcgt.org/published/0014/01/02/

https://research.nvidia.com/labs/rtr/publication/wronski2025laplacian/

Problem
Given 3 textures:

A and B of the same type (albedo, normals, whatever)
M is the blending mask

How do you blend A and B according to M in a natural way?

Insights

Each mask blur level works best with a certain image feature level
A sharp mask works best for nicely blending high-frequency details while a blurrier mask work best for nicely
blending low-frequency details. Maybe we should focus on splitting up frequencies into bands that are each
blended in separately with a mask that's been blurred appropriately?

The difference between successive mip levels of a texture are different
frequency bands
If we only use 4 mip levels, we get 3 frequency bands:

M(0) - M(1) gives us a high-frequency signal.
M(1) - M(2) gives us a medium-frequency signal.
M(2) - M(3) gives us a low-frequency signal.

High/medium/low is very relative. What does matter is that the frequencies are nicely split.

Collapsing a Laplacian pyramid of a given image gives us the original
image back
If we follow these steps for a given image:

Build a Gaussian pyramid of an image:
G(0) is the orignal image
G(i + 1) is more blurry than G(i).

Build a Laplacian pyramid based on that: L(i) = G(i) - G(i + 1).

Laplacian Texture Blending.md 2025-08-15

2 / 4

Collapse the Laplacian against a Gaussian base.

Then we have the original image back.

Let's say we use 4 Laplacian levels, here's what happens during collapse:

LC4 = G(4) + L(3) + L(2) + L(1) + L(0)
 = G(4) + (G(3) - G(4)) + (G(2) - G(3)) + (G(1) - G(2)) + (G(0) - G(1))
 = G(0)

It cancels out. Now of course in practice we don't have infinite precision but mathematically it works out.

Method overview
Generate the Laplacian pyramids of both textures:

A's mip pyramid

A(0) A(1) A(2) A(3)

- - -

A's Laplacian pyramid

LA(0) LA(1) LA(2) A(3)

B's mip pyramid

B(0) B(1) B(2) B(3)

- - -

B's Laplacian pyramid

LB(0) LB(1) LB(2) B(3)

Laplacian Texture Blending.md 2025-08-15

3 / 4

Compute the final blended image based on both Laplacian pyramids:

This second image is from the GPU Friendly Laplacian Texture Blending paper by Bartlomiej Wronski.

The mask-weighted per-frequency-band contributions of both images are computed separately and then
combined into a single Laplacian pyramid, which then gets collapsed to produce the final blended image.

Algorithm
Prerequisites:

Pick a number of bands called N, let's say 4.
Generate standard mip pyramids for A, B and M. At least N + 1 levels are needed.

// mask values: 1 picks A, 0 picks B
float4 Blend(Texture2D A, Texture2D B, Texture2D M, SamplerState sampler, float2
tc)
{
 const uint N = 4; // number of Laplacian levels

 float4 mipsA[N + 1];
 float4 mipsB[N + 1];
 float4 mipsM[N + 1];
 for(uint i = 0; i < N + 1; i++)
 {
 float mipLevel = float(i);
 mipsA[i] = A.SampleLevel(sampler, tc, mipLevel);
 mipsB[i] = B.SampleLevel(sampler, tc, mipLevel);

Laplacian Texture Blending.md 2025-08-15

4 / 4

 mipsM[i] = M.SampleLevel(sampler, tc, mipLevel);
 }

 float4 blended = lerp(mipsA[N], mipsB[N], mipsM[N]);
 for(uint i = 0; i < N; i++)
 {
 float4 laplacianA = mipsA[i] - mipsA[i + 1];
 float4 laplacianB = mipsB[i] - mipsB[i + 1];
 blended += lerp(laplacianA, laplacianB, mipsM[i]);
 }

 return blended;
}

